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Abstract: This study addresses consensus problems of multi-agent systems (MASs) using dynamic output feedback control under
both fixed and switching topologies. We aim to exploit the information structure for the consensusability of MASs. Necessary and
sufficient conditions are presented in terms of detectability and stabilisability of the agents, graph topology, and some matrix
inequality constraints. These conditions explicitly reveal how consensusability is affected by the intrinsic dynamics of the
agents, the communication topology and available information. In addition, this paper provides several constructive
procedures for protocol design to achieve consensus, and establishes the so-called separation principle, which simplifies the
design procedure greatly.
1 Introduction

The interplay between control and communications has been
attracting increasing attentions in recent years. It becomes
well known that communication constraints and information
flow can significantly affect the performance of networked
control systems, especially for networked multi-agent
systems (MASs). The consensus problem is one of the
fundamental problems for networked MASs [1–5].
Consensus protocols for continuous-time systems are
presented using a static state feedback control in [1, 2, 4,
6–9], while for the discrete-time counterpart, necessary and
sufficient conditions for consensusability are given in [10, 11].
However, when some states are unmeasurable, the output

feedback control needs to be considered. Under mild
assumptions, a sufficient condition for MASs to reach
consensus via static output feedback control (SOFC) is
presented in [7]. In [12], a sufficient condition for single-
input-single-output (SISO) MASs is presented. Note that
the applicability of the SOFC-based protocols is inherently
limited given their existence conditions and design
difficulty, for example, stabilisability and detectability
generally cannot guarantee the existence of an SOFC and
the control design usually involves bilinear matrix
inequalities (BMIs). Hence, dynamic output feedback
control (DOFC)-based protocols have been studied in the
literature [13–17]. In [13], a necessary and sufficient
condition using simultaneous stabilisation for a local
controller to stabilise certain formation dynamics is given.
In [18], an extended result on SISO system for
double-integrator dynamics [1] is provided. An
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observer-based controller is proposed in [14], where a
separation principle-like condition is presented. In [12, 15,
19, 20], the DOFCs are also observer-based. This paper,
different from the above literature, will explore a more
general form of DOFC and its prosperities.
In addition, all those DOFC-based protocols [12, 15, 19, 20]

are designed only for fixed topologies. Few works are
concerned with switching topologies [1, 6, 21, 22] even for
static feedback control. In [6], a framework for fixed and
switching topologies is proposed for agents with simple
dynamics. In [1], the MASs with double-integrator dynamics
are investigated. In [23], a design strategy for double-integral
systems is introduced to handle strongly connected, directed
and unbalanced graphys under a switching network
configuration, although the properties of balanced graphs are
still used. In [24], the notion of globally reachable node
under dynamically changing interaction topology is studied,
whereas [17] is concerned with a leader-follower consensus
under switching topology. In [8], a protocol is proposed
under weak connection and balance assumption for directed
graph, which is a strong assumption. However, to the best of
our knowledge, little work has been conducted on consensus
via DOFC under switching topologies and the influence of
information levels [16]. In [21], an equivalence is established
between robust stabilisation of some uncertain systems and
the consensus of output feedback. And then a controller is
designed by tuning a time-scale parameter for consensus.
However, the design is under some strict assumptions, for
example, the underlining MAS is square system.
In this paper, we derive further necessary and sufficient

conditions on consensus using generalised DOFCs under
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various information structures. With full local information,
we demonstrate that consensusability is equivalent to
stabilisability via a single dynamic output feedback
controller, given the connectivity of the network and
homogeneity of agents. With partial local information,
however, the situation becomes complicated. Specifically,
for some particular information structures, we prove that the
consensusability is simply equivalent to the stabilisability
and detectability of agents under a digraph containing a
spanning tree. Meanwhile, the separation principle is valid
under some special structures. Besides, the benefits of
additional local information are also discussed. In addition,
switching (time-varying) topologies are considered for both
digraph and undirected graph. We show that under the
assumption of consistent weak connectivity together with
dwell time or balanced digraph, the results for static
topologies are still applicable. When the strong assumption
is invalid, our results link consensusability to a joint
spanning tree and the system structure.
This paper is organised as follows. Section 2 starts with

problem statements, followed by some preliminaries.
Section 3 considers the generalised DOFC-based protocols
for digraph. Section 4 addresses the consensus problem
under switching topology for both digraph and undirected
graph. Section 5 uses an example of linearised satellite
systems for illustration. The last section concludes this
paper and provides directions for future research.
The notations used in this paper are standard. R and C

denote the real and complex spaces, respectively. AT (A∗) is
the transpose (conjugate) of A. A > 0 (A ≥ 0) means that A
is positive definite (semidefinite). ∅ is the empty set. ȷ is
the pure imaginary number such that ȷ2 = −1. 1 is a vector
with one as its entries. ⊗ is the symbol for the Kronecker
product. The communication topology among agents is
represented by a digraph G, which consists of a node set
V = {1, 2, . . . , n} and an edge set E [ V × V. Denote the
adjacency matrix of G as Ag = [aij] [ Rn×n and the
in-degree matrix as �D, where aij = 1 if there is a link i � j
and aij = 0 otherwise. Then the Laplacian matrix of a
digraph G with n vertices Lg [ Rn×n can be represented as
Lg = �D−Ag. Let li be any eigenvalue of Lg . For agent i,
denote its neighbour set as N (i). A digraph G contains a
spanning tree if there exists a root (node) such that there
exists a directed path from this node to every other node
[14]. In addition, Lg of a digraph G has no eigenvalues
with negative real part and at least one zero eigenvalue. Lg
has only one zero eigenvalue if and only if G contains a
spanning tree [6, 7]. Without loss of generality, assume that
i = 2, . . . , n, i = 2, . . . , n are the eigenvalues of Lg and
0 ≤ Re(l2) ≤ · · · ≤ Re(ln).

2 Problem formulation and preliminaries

2.1 Problem statement

Consider the following MAS

ẋi = Axi + Bui (1)

yi = Cxi, i = 1, 2, . . . , n (2)

where xi [ Rnx , ui [ Rr, yi [ Rm are the state, control input
and output of the agent i, respectively. Note that the agents are
homogeneous. Define α as the first column of Ag by deleting
the first entry a11 and L as a principal minor by deleting the
IET Control Theory Appl., 2013, Vol. 7, Iss. 1, pp. 108–115
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first column and first row of Lg . Thus, Lg can be expressed as

Lg =
∑n

j=1 a1j −aT

−L · 1 L
( )

(3)

For system (1)–(2), if there exists a u(t) [ U, where U is a set
of admissible control inputs, such that

lim
t�1 ‖xj(t)− xi(t)‖ = 0, i, j = 1, . . . , n

then the system is deemed to asymptotically reach a
consensus.
The main objective of this paper is to examine

consensusability using the following distributed
DOFC-based consensus protocol for the agent i, i [ V

j̇i = Mji + Nyi + V
∑n
j=1

aij(jj − ji)+ H
∑n
j=1

aij(yj − yi) (4)

ui = Sji + Ryi + L
∑n
j=1

aij(jj − ji)+ K
∑n
j=1

aij(yj − yi) (5)

where M, N, L, K, S, R, V, H are gain matrices with
appropriate dimensions and ji is the internal state. When
the pairs (M, S), (N, R), (V, L) and (H, K ) are non-zero, the
protocol of agent i uses full local information (yi and ji)
from itself and its neighbours (including yj and jj,
j [ N (i)). However, it is not always true that all local
information are available to an agent. For instance, assume
that yi represents the location information of agent i
obtained by GPS. When the GPS is not available, yi
becomes unknown. In this case, we may only have the
relative information yi − yj (e.g. the distance between the
two agents) obtained by some on-board sensors such as
laser range finders. Thus N and R are zero matrices. We
will present some basic properties of the DOFC-based
consensus protocols using full local information in Section
3.1 and discuss partial local information cases in Section 3.2.

2.2 Preliminaries

Lemma 1: Suppose that the digraph G contains a spanning
tree. (A, B) is stabilisable if and only if
�Kc = {F:A+ liBF is Hurwitz, i = 2, . . . , n} = ∅. (A, C )
is detectable if and only if �Ko = {L:A+ liLC is Hurwitz,
i = 2, . . . , n} = ∅.

Proof: The proof procedure follows from a constructive
method by applying Finsler’s lemma [25]. Details can be
found in [16].

Remark 1: With the aid of Lemmas 1 and 16 in [16], we can
derive the consensusability condition for static state/output
feedback protocols. In fact, for static state feedback protocol
[4], consensusability is equivalent to the stabilisability of
(A, B), if G contains a spanning tree. Under the
precondition of Lemma 16 in [16], the consensusability of
the output feedback protocols [4] is equivalent to the
existence of a certain set K defined in [16].

Lemma 2: For any undirected graph G with the corresponding
Laplacian matrix Lg, the matrix L+ 1 · aT is similar to a
diagonal matrix.
109
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Proof: Based on (3), we can see that S−1LgS =
0 −aT

0 L+ 1 · aT

( )
8 L̆g, where S = 1 0

1 In−1

( )
. Since Lg

is symmetric as G is undirected, there exists a matrix T such
that T−1LgT is a diagonal matrix defined as Λ. Thus L̆g is
also similar to Λ, that is, for any eigenvalue li of L̆g

rank(liIn − L̆g) = n− r(li) (6)

where r(li) is the degree of the algebraic multiplicity of li.
Note that because of the special structure of L̆g, any
eigenvalue of L + 1 · aT is also L̆g’s. Now we consider two
cases depending on whether G contains at least one
spanning tree.
If G has at least one spanning tree, choose an eigenvalue
lj = 0 of L + 1 · aT. If L+ 1 · aT is not diagonisable,
rank(ljIn−1 − (L + 1 · aT)) . n− 1− r(lj). Meanwhile,
rank(ljIn − L̆g) = 1+ rank(ljIn−1 − (L+ 1 · aT)). Thus we
obtain a contradiction to (6). Hence, L + 1 · aT is
diagonisable.
Otherwise, we can always divide G into several connected

components (subgraphs). To illustrate, suppose there are two
components G1 and G2 whose Laplacian matrices are
Lg1

[ Rn1×n1 and Lg2
[ Rn2×n2 , respectively. Then

Lg =
Lg1

0
0 Lg2

( )
. Define �S = S1 0

0 S2

( )
, where

Si =
1 0
1 Ini−1

( )
, i = 1,2. Then �S

−1Lg
�S = L̆g1

0

0 L̆g2

( )
,

where L̆gi
has an analogous structure to L̆g. Since there

always exists an invertible matrix X such that S = �SX , we
can apply the aforementioned result to obtain the
conclusion. □

3 Dynamic output feedback consensus and
separation principle

3.1 Consensus protocols with full local information

This subsection presents a result when full local information
is available.

Theorem 3: Suppose that digraph G contains a spanning tree.
There exists a protocol (4)–(5) such that consensus is
asymptotically reached for all initial states if and only if
Kd = ∅, where

Kd = {�K:�A+ �B�K�Ciis Hurwitz , i = 2, . . . , n} (7)

Furthermore, for a given �K [ Kd , we have

v(t) � (1rT ⊗ eA)v(0), t � 1 (8)

where

�A = A 0
0 0

( )
, �B = B 0

0 I

( )
, �K1 = R S

N M

( )
(9)

�K2 = K L
H V

( )
, Ĉ = C 0

0 I

( )
(10)

�K = [�K1,
�K2], �C = Ĉ

Ĉ
( )

, �Ci = Ĉ
liĈ

( )
(11)
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v = [vT1 , v
T
2 , . . . v

T
n ]

T and vi = [xTi j
T
i ]

T,
rT = [r1, . . . , rn] [ Rn is the left eigenvector of Lg
associated with the eigenvalue 0, satisfying rT1 = 1.

Proof: Owing to the homogeneity of agents, without loss of
generality, we can choose the difference between vector
indices i and 1, that is

di = x1 − xi

zi = j1 − ji

Then

ḋi = (A+ BRC)di + BKC
∑n
j=1

(aij − a1j)dj −
∑n
j=1

aijdi

( )

+ BSzi + BL
∑n
j=1

(aij − a1j)zj −
∑n
j=1

aijzi

( )

żi = Mzi + NCdi + HC
∑n
j=1

(aij − a1j)dj −
∑n
j=1

aijdi

( )

+ V
∑n
j=1

(aij − a1j)zj −
∑n
j=1

aijzi

( )

that is

6̇ = [I ⊗A− (L + 1 · aT)⊗B]6 (12)

where

6i = di
zi

( )
, 6 =

62

..

.

6n

⎛
⎜⎝

⎞
⎟⎠

A = A+ BRC BS
NC M

( )
, B = BKC BL

HC V

( )

Noting the structure of Laplacian matrix Lg defined in (3), we
can easily deduce the following conditions:

1. The remaining n− 1 eigenvalues of Lg (except 0) are
determined by L + 1 · aT;
2. There exist a Jordan matrix J and an invertible matrix T
such that T−1(L + 1 · aT)T = J .

Thus (T ⊗ I)−1[I ⊗A− (L+ 1 · aT)⊗ B](T ⊗ I) =
I ⊗A− J ⊗ B. This implies that the eigenvalues of
[I ⊗A− (L + 1 · aT)⊗ B] are governed by �A+ �B�K�Ci.
Hence, the consensus is reached if and only if �A+ �B�K�Ci is
Hurwitz for a certain �K, i = 2, . . . , n.
To prove the second part, we define

�T = [1�] [ Rn×n, �T
−1 = rT

�

( )
,

�T
−1Lg

�T = �J = 0 0

0 �Jd

( )

where ♯ denotes entries we are not interested in and �Jd is a
Jordan matrix with non-zero eigenvalues of Lg as its
IET Control Theory Appl., 2013, Vol. 7, Iss. 1, pp. 108–115
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diagonal entries. It is easy to observe that
ẏ = (I ⊗A+Lg ⊗ B)y, which gives the solution

y(t) = e(I⊗A+Lg⊗B)ty(0)

= (�T ⊗ I)e(I⊗A+ �J⊗B)t(�T−1 ⊗ I )y(0)

= (�T ⊗ I)
eAt 0

0 e(I⊗A+�Jd⊗B)t

( )
(�T

−1 ⊗ I)y(0)

(13)

By Theorem 3, (I ⊗A+ �J ⊗ B) is Hurwitz. Hence, (8)
holds. Thus, we complete the proof. □

Remark 2: Based on Theorem 3, we can see that the
convergent rate is determined by �K. However, the
convergence (consensus) value is not influenced by �K2
from (8). Note that here �K is a variable matrix without
structure constraint, thus we can easily derive that Kd = ∅
if and only if K̂d1 = {K̂1:

�A+ �BK̂1Ĉ is Hurwitz} = ∅.

3.2 Partial local information and separation
principle

Consider the similarity transformation Qi = PCiP
−1, where

Ci = �A+ �B�K�Ci and P = I 0
−I I

( )
. Qi can be simplified

as

A+ BS1 + liBL1 liBL+ BS
0 A− NC + BRC + li(− HC + BKC)

( )

by defining

S = S1 − RC, L = L1 − KC

− A+ NC +M − BS1 = 0, HC − BL1 + V = 0
(14)

where S1, L1, N1 and H1 are auxiliary matrices. Now by
rearranging the controller gains and applying Lemma 1, we
have the following result [16].

Corollary 4: Assume that the controller gain �K satisfies (14)
and one of the following additional constraints

N = N1 + BR, H = BK, S1 = 0 (15)

H = H1 + BK, N = BR, S1 = 0 (16)

H = H1 + BK, N = BR, L1 = 0 (17)

Then there exists a protocol (4)–(5) such that consensus is
asymptotically reached for all initial states if and only if (1)
(A, B) is stabilisable; (2) (A, C ) is detectable; and (3) if A is
not Hurwitz, G contains a spanning tree.

Remark 3: The results stated in Corollary 4 together with
Lemma 1 are interesting. They lead to the so-called
separation principle. For example, under the constraints (14)
and (15), we can design the gains L1 and N1 separately. L1
can be designed using the procedure introduced in the proof
of Lemma 1. For N1, simply choose one such that A− N1C
is stable. R and K can be arbitrarily assigned. And then L,
N, S, H, M and V can be obtained accordingly. Another
interesting case is that N = N1 + BR, H = BK, L1 = 0, K≠0
together with (14), which is not related to li.
IET Control Theory Appl., 2013, Vol. 7, Iss. 1, pp. 108–115
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Now we consider some special cases of Corollary 4. First, we
consider the case that N and R are zero, that is, yi is unknown
for agent i, which will reduce the DOFC protocol (4)–(5) to
observer-based protocols satisfying the condition of
Corollary 4

Protocol 1:

j̇i = Aji + BL
∑n
j=1

aij(jj − ji)+ H
∑n
j=1

aijx ji

ui = L
∑n
j1

aij(jj − ji)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(18)

Protocol 2:
j̇i = Aji + BSji + H

∑n
j=1

aijx ji

ui = Sji

⎧⎨
⎩ (19)

where x ji = yj − Cjj − yi + Cji. Note that (19) is suggested
in [12, 14] and (18) is proposed for discrete-time cases in
[10].
Second, we consider the case that besides N = 0, R = 0, the

gains V and L are also zero matrices, that is, both yi and jj − ji
are unknown. Note that this can reduce the communication
load. If (18) or (19) is used, then the consensusability is
achieved only if A is stable. When A is not stable, a
stronger condition may be enforced. For example, if further
S = 0 (or H = 0), then �K = {L:A+ liBLC is Hurwitz , i =
2, . . . , n} = ∅ is the necessary and sufficient condition for
Kd = ∅ (in this case, M must be stable).
Third, let us look at some other interesting cases. For

example, in the case that yj − yi is unknown, if K = 0, R = 0,
H = 0, S = 0, M = A− NC, V = BL, then the separation
principle holds. For the case of V = 0, L = 0, [13] provides
some similar results. In addition, if one of the following
conditions holds: (1) R = 0, N = 0, H = 0, S = 0, M = A, V−
BKC− BL = 0; (2) R = 0, N = 0, H = 0, L = 0, M− A− BS =
0, V = BKC; (3) �K1 is a zero matrix, the problem is similar
to the one with static output feedback protocol and can be
partially solved using Lemma 16 in [16].

Remark 4: Now a natural question is what is the benefit of
design with more information. First, we can see that the
existence condition for consensusability and
formationability with less information is generally stronger
than that with more information. For example, the existence
condition of the aforementioned protocols with N = 0, R = 0,
L = 0 and V = 0 is stronger than that of (18) and (19).
Second, the extra variables in the formulation may bring
more freedom in pole/eigenstructure assignment, thus
the consensus convergence rate can be faster. Third, the
consensus value may be adjusted. For example, using
the protocols (19) such that Kd = 0, xi � (rT ⊗ eA)X (0)
when t→∞, where X (0) = [x1(0)

T, . . . , xn(0)
T]T. If we

add a R ≠ 0 to the protocols (19) in (4)–(5), then
xi � (rT ⊗ eA+BRC)X (0) when t→∞.

Remark 5: Formation control can be viewed as a special case
of consensus with additional formation vectors
H = (hT1 , . . . , h

T
n )

T [16], that is, if there exists a u(t) [ U,
such that limt�1 ‖xj(t)− xi(t)− (hj − hi)‖ = 0, i, j =
1, . . . , n, then the system asymptotically reaches a
formation H. When the information exchange of internal
111
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state is allowed, we design the formation protocol as follows

j̇i = M (ji − hi)+ V
∑n
j=1

aij�z ji + N (yi − Chi)

+ H
∑n
j=1

aijx ji (20)

ui = S(ji − hi)+ L
∑n
j=1

aij�z ji + R(yi − Chi)

+ K
∑n
j=1

aijx ji (21)

where �z ji = jj − ji − hj + hi and x ji are defined in (18). By
introducing the new vectors �di = x1 − xi − h1 + hi and
�z1i = j1 − ji − h1 + hi, we can obtain the following result:

Corollary 5: Consider the system (1)–(2) and assume that G
contains a spanning tree. Then, there exists a protocol (20)–
(21) such that the prescribed formation is asymptotically
reached for all initial states if and only if Kd = ∅ and A(hi−
hj) = 0, i, j = 1, . . . , n.
Note that besides the choice of the controller gains, the
position of hi in the structure also affects the
formationability. In fact, if we slightly change (21) to

ui = Sji + R(yi − Chi)+ L
∑n
j=1

aij�z ji + K
∑n
j=1

aijx ji

then the formationability is equivalent to Kd = ∅ and (A+
BS)(hi − hj) = 0, i, j = 1, . . . , n. Obviously, the matrix S
introduces some flexibility for the formation control design.

4 Switching topologies

Consider an infinite sequence of non-empty, bounded
and contiguous time intervals [tk , tk+1), k = 0, 1, . . .,
with t0 = 0, tk+1 − tk ≤ T for some constant T > 0.
Assume that for each [tk , tk+1), there is a sequence of
non-overlapping subintervals [t0k , t

1
k+1), . . . , [t

j
k , t

j+1
k+1),

. . . , [tmk−1
k , tmk

k+1), tk = t0k , tk+1 = t
mk+1
k+1 satisfying t j+1

k+1−
t jk+1 ≥ t, 0 ≤ j ≤ mk − 1 for some integer mk . 0 and a
given constant τ > 0 such that G(t) is not changed for

t [ [t jk , t
j+1
k+1) and changed at time t j+1

k+1. Let S denote an
index set for all possible digraphs defined on the vertices
{1, 2, . . . , n} and S , S be the index set of actual
digraphs of switching topologies of system dynamics. There
is no doubt that S is a finite set if n <∞.
It is well-known that a switching system is asymptotically

stable if all individual subsystems are asymptotically stable
and the switching is sufficiently slow, that is, τ is large
enough, so as to allow the transient effects to dissipate after
each switch [26]. If we assume that the dwell time τ is
larger than the lower-bound/critical dwell time as stated in
[26], then there exists a protocol (18) or (19) such that a
consensus is asymptotically reached for all initial states if
(A, B) is stabilisable, (A, C ) is detectable, and the finite
switching topology G(t) always contains a spanning tree.
Motivated by [8], we can also derive a similar conclusion
112
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for the weakly connected and balanced digraph G(t) without
constraint on the dwell time.
Using the consensusability result in Corollary 4, we can

easily derive a protocol for sufficiently slow-switching
connected topologies, as long as the switching topologies
are known a priori, or at least the minimum non-zero
eigenvalue of all the Laplacian matrices is known a priori.
In a sense, this knowledge on system topologies is global.
If such knowledge is unknown, there are two options. The
first one is based on a greedy-like algorithm. Given that
there are only a finite number of connected topologies, we
can always find the minimum non-zero eigenvalue for each
topology, although it may be conservative since not all
topologies are used. The second option is to use an
adaptive procedure to find proper eigenvalue-related
coupling weights [27]. However, the spanning tree
condition and slow switching condition are conservative,
which motivates us to relax the requirement by using the
concept of the so-called joint spanning tree in the following.
Consider the graph G(t) for t [ [tk , tk+1) as having a joint

spanning tree if the union of the graphs G(t) for t [ [tk , tk+1)
has a spanning tree. For a s(t) [ S, t [ [tk , tk+1), denote the
associated graph as Gs(t), whose components are

S1s(t), . . . , S
�ns(t)
s(t) arranged in the order of the numbers of

vertices (from largest to smallest). Without loss of
generality, assume that there exist some components
S1s(t), . . . , S

ns(t)
s(t) , ns(t) ≤ �ns(t), whose Lj + 1a jT , j = 1,

. . . , ns(t), have eigenvalues of positive real part, where Lj

and a j are defined similarly to L and a. It means that these
components are not isolated vertices. Define

ℓ(s(t)) = v:v [
⋃ns(t)

j=1 V(S
j
s(t))

{ }
, where V(Sjs(t)) is the index

set of all vertices of the corresponding components Sjs(t) and
|V(Sjs(t))| ≥ 2. We can easily derive that if G(t) contains a
joint spanning tree for each interval [tk , tk+1), then⋃

t[[tk ,tk+1)
ℓ(s(t)) = {1, . . . , n}.

Theorem 6: Assume that G(t) is undirected and A has no
eigenvalue of positive real part. There exists a protocol (18)
(or (19)) such that consensus is asymptotically reached for
all initial states if (A, B) is stabilisable, (A, C ) is detectable,
and the switching topology G(t) contains a joint spanning
tree for each interval [tk , tk+1).

Proof:We only consider the case (19). A constructive method
similar to Lemma 1 is applied. Let lsı = as

ı + ȷbs
ı be the

eigenvalues of all Laplacian matrices Lg(s) of system
dynamics, s(t) [ S. Arrange all the non-zero as

ı for all
s(t) [ S into a set A. Index all lsı as the set L.
It is easy to find that Cl = �A+ �B�K�Cl, l [ L, is similar to

Ql = A+ BS BS
0 A− llHC

( )
. Construct the H using the

method in Lemma 1, H = �t
2P

−1CT, where P is a solution
to ATP + PA− tCTC , 0, ATP + PA ≤ 0, P > 0, τ > 0,
�t = t

a and a = minA. Construct S = −BT �Q
−1
, where �Q is

the solution of A�Q+ �QAT − BBT , 0, �Q . 0. There are
two cases based on whether ll = 0.
When ll = 0, for certain Wl . 0,

(A− llHC)
TP + P(A− llHC) = −Wl , 0. Now the task is

to find a common Lyapunov matrix P = Q 0
0 fP

( )
. 0

for all Ql such that the Lyapunov inequality holds, that is,

PQl +QT
l P , 0, where Q = �Q

−1
. That is possible since

for Wl = Wc − 1
fQBSW

−1
l STBTQ where

Wc = f((A+ BS)TQ+ Q(A+ BS)), by adjusting φ, that is,
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making φ large enough,Wl , 0 always holds for ∀l [ L as L
is a finite set. Thus, PQl +QT

l P , 0 holds for ∀l [ L.
Define �P = PTPP. Then

�PCl +CT
l
�P = PT(PQl +QT

l P)P , 0

For ∀l [ L, there exists a j > 0 such that
�PCl +CT

l
�P + wI , 0. When ll = 0, we have

�PCl +CT
l
�P ≤ 0.

Owing to the fact stated in Lemma 2, there exist invertible

matrices Tl such that (Tl ⊗ I )−1[I ⊗A− (Ll + 1 · alT)⊗
B](Tl ⊗ I ) = I ⊗Ql. TT

l (Ll + 1 · alT)Tl = Ll = diag{l(1)l ,

. . . , l
(ln)
l }, where l(j)l are corresponding eigenvalues. Thus,

we define �6 = (Tl ⊗ I )6. Since Tl is invertible, instead of
proving the stability of ς, we can prove the stability of �6.
In the following, we use the Lyapunov stability theory [28]

with a similar technique in [17] to prove the consensusability.
Define the Lyapunov function for the switching system �̇6
similarly to (12)

V (t) = �6T(I ⊗ �P)�6

Clearly, V(t) > 0 for �6 = 0.

V̇ (t) = �6T((I ⊗A− Ll ⊗ B)(I ⊗ �P)
+ (I ⊗ �P)(I ⊗A− Ll ⊗ B))�6

= �6T(I ⊗ (�PCl +CT
l
�P))�6 , −w

∑
j[ℓ(l)

�6j
T�6j

Consider the infinite sequences V (ti), i = 0, 1, . . ., based on
Cauchy’s convergence criteria. There exists a positive
number ‘(e) for any e > 0 such that ∀k ≥ ‘(e),
|V (tk+1)− V (tk )| , e or | �tk+1

tk
V̇ (t)dt| , e. that is, in the

interval [tk , tk+1)

∫t1k
t0
k

V̇ (t)dt + · · · +
∫tmk

k

t
mk−1
k

V̇ (t)dt . −e

For each sub-integral,
�ti+1

k

ti
k

V̇ (t)dt , − �ti+1
k

ti
k

w∑
j[ℓ(ti

k
) �6

T
j �6j dt , − �tik+t

ti
k

w
∑

j[ℓ(ti
k
) �6j

T�6j dt. Thus e .

w
�t0k+t

t0
k

∑
j[ℓ(t0

k
) �6

T
j�6j dt + · · · + �tmk−1

k
+t

t
mk−1
k

∑
j[ℓ(t

mk−1
k

)
�6j

T�6j dt.

Since mk is finite, for k . ‘(e), e . w
�tik+t

ti
k

∑
j[ℓ(ti

k
) �6j

T�6j dt,

i = 0, 1, . . . , mk − 1, that is

lim
t�1

∫tik+t

ti
k

∑
j[ℓ(ti

k
)

�6j
T�6j ds = 0, i = 0, 1, . . . , mk − 1

which implies that limt�1
∑mk−1

i=0

�tik+t

ti
k

∑
j[ℓ(ti

k
) �6j

T�6j ds = 0.
Since

⋃
t[[tk ,tk+1)

ℓ(s(t)) = {1, . . . , n} owing to the
assumption of joint spanning tree, we can derive that
limt�1

�tik+t

ti
k

∑n
j=1 aj�6

T
j �6j ds = 0, where aj . 0 are some

positive integers. The fact V̇ (t) , 0 implies that �6 is
bounded and so is �̇6. Thus

∑n
j=1 aj�6

T
j �6j is uniformly

continuous. Applying Barbalat’s lemma [28], we can see
that limt�1

∑n
j=1 aj�6

T
j �6j ds = 0. Hence, limt�1 �6j = 0 can

be derived. So is 6j. □
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Remark 6: The results stated in Sections 3 and 4 can be
extended to the leader–follower case. Suppose that the
leader’s dynamics satisfy

ẋ0 = Ax0 (22)

y0 = Cx0 (23)

and the other agents are followers with dynamics (1)–(2).
Define a diagonal matrix D [ Rn×n with its diagonal
entries di = 1 or, 0, that is, if the link (0, i) exists, then
di = 1, otherwise di = 0. Denote the new graph as �G which
contains the leader agent 0 and following agents 1, . . . , n.
Denote the Laplacian matrix of �G as �Lg . Consider the
DOFC-based consensus protocol using the relative
information as follows

j̇i = Mji − Vdiji + V
∑n

j=1
aij(jj − ji)

+ H
∑n

j=1
aij(yj − yi)+ Hdi(y0 − yi)

(24)

u = Sji − Ldiji + L
∑n

j=1
aij(jj − ji)

+ K
∑n

j=1
aij(yj − yi)+ Kdi(y0 − yi)

(25)

Some results for fixed topologies have been presented in [16].
For switching topologies, we have the following result.

Theorem 7: Assume that �G is undirected and A has no
eigenvalue of positive real-part. There exists a protocol
(24)–(25) under the equation constraint (K = 0, S = 0, M = A,
V = BL−HC) or (K = 0, L = 0, M = A− BS, V =HC) such
that leader–follower consensus is asymptotically reached for
all initial states if (A, B) is stabilisable, (A, C ) is detectable,
and the switching topology �G(t) contains a joint spanning
tree rooted at 0 for each interval [tk , tk+1).

5 Simulation example

Consider the following linearised dynamics of satellite
systems [14].

�̈xi − 2w0�̇yi = uxi

�̈yi + 2w0�̇xi − 3w2
0�yi = uyi

z̈i + w2
0zi = uzi

where ri = [�xi, �yi, �zi]
T is the position component of the ith

satellite in the rotating coordinate, ui = [uxi , uyi , uzi ]
T is

control input and w0 denotes the angular rate of the virtual
satellite. i = 1, . . . , 4. The communication topology G1 is
shown in Fig. 1. We assume that only the ri is known,
while their speed is unknown. Then the above equations
can be formulated into a 6-state (xi = [rTi ṙ

T
i ]

T) and 3-input
(ui) system (1), that is

A = 03 I3
A1 A2

[ ]
, B = 03

I3

[ ]
, C = I3 03

[ ]

A1 =
0 0 0
0 3w2

0 0
0 0 −w2

0

⎡
⎣

⎤
⎦, A2 =

0 2w0 0
−2w0 02 0
0 0 0

⎡
⎣

⎤
⎦
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where I3 is the 3 × 3 identity matrix and 03 is the 3 × 3 zero
matrix. We intend to design a formation with
h2 = (− 100, 100, 0), h2 = (− 100, 100, 0),
h4 = (− 100, 10, 173.21), h4 = (− 100, 10, 173.21).
Assume that w0 = 0.001.
For the fixed topology case, we simply design a protocol

(18). Through a simple LMI formulation as stated in
Lemma 15 of [16] and Remark 3, we can obtain the
following solution for (18):

L=
−1.131 0.0005 0 −0.5687 0.0001 0
−0.0005 −1.131 0 −0.0001 −0.5687 0

0 0 −1.131 0 0 −0.5687

⎡
⎣

⎤
⎦

H=

0.5688 0.0001 0
−0.0001 0.5688 0

0 0 0.5687
1.131 0.0005 0

−0.0005 1.131 0
0 0 1.131

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 2 shows the formation trajectories using the controller (18),
where ▵ denotes the initial positions with agent number and ○
the final positions after 50 s. We can see that the desired
formation is achieved. Fig. 3 shows the leader–follower
formation control, where ▵ denotes the initial positions of the
followers and * the initial position of the leader.
Now let us look at the switching topology case. Note that A

has no eigenvalue with positive real part. First, we consider
the situation that all graphs contain the spanning tree. For
example, suppose that the communication topologies
uniformly switch among Gk , k = 1,2,3,4, where Gk is defined

Fig. 2 Leaderless formulation using controller (18)

Fig. 1 Communication topologies
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in Fig. 1. We simulate the system behaviours for different
switching intervals with τ = 0.5 s and τ = 0.05 s,
respectively. Fig. 4 shows the corresponding formation
control trajectories for τ = 0.5 s and Fig. 5 for τ = 0.05 s.
Second, we consider the joint spanning tree cases. The
corresponding switching topologies are Gk , k = 5,6,7,8, as
shown in Fig. 1. Note that all graphs contain no spanning
tree. We also assume that the topology will change at time
intervals of 0.5 and 0.05 s, respectively. Figs. 6 and 7 show
the formation trajectories under such switching topologies.

Fig. 5 Formulation under switching digraphs: τ = 0.05 s

Fig. 3 Leader–follower formulation using controller (18)

Fig. 4 Formulation under switching digraphs: τ = 0.5 s
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6 Conclusion

This paper presented some necessary and sufficient
conditions for consensusability via dynamic output
feedback. Most of these conditions were proved by
constructive methods. The proposed protocols can not only
be used for static communication topologies but also for
switching communication topologies as long as the
minimum non-zero eigenvalue of the Laplacian matrices of
these topologies are known a priori. Our future work will
further investigate the properties of these protocols such as
the consensus under switching digraph. We will also
address the corresponding problems for the cases with
constrained input and partial consensus situations.
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